

STEREO Beacon

O. C. St. Cyr

The Catholic University of America
NASA-Goddard Space Flight Center
(301) 286-2575 cstcyr@grace.nascom.nasa.gov

STEREO Beacon

- Each STEREO spacecraft will broadcast highly compressed SWx images and in situ data continuously.
- During the daily 3-hour DSN contacts, the SWx stream will be captured, processed, and put online in near-real-time at the STEREO Science Center (SSC) located at NASA-GSFC.
- As soon as the recorder dumps are available, the SSC will fill in the previous 24 hours' SWx data as a browse archive.

STEREO Payload

Instrument Name and Collaborating Institutions	Primary Measurement Space Weather Beacon Content [Number of 272 byte packets per minute]
IMPACT (In situ Measurement of Particles and CME Transients)	Solar wind plasma characteristics; magnetic field parameters; solar energetic particles
Principal Investigator: Dr. J. G. Luhmann, University of California, Berkeley, NASA-GSFC, Caltech, U. Md, U. Kiel, CESR, MPAe, JPL, ESTEC, UCLA, NOAA, LANL, et al.	One minute average solar wind electron fluxes (6 energy bands); magnetic field strength and direction; energetic electron, proton, ion (He,CNO,Fe) fluxes (multiple bands) [1]
PLASTIC (PLAsma and SupraThermal Ion and Composition)	Ions in the energy-per-charge range of 0.2 to 100 keV/e
Principal Investigator: Dr. A. B. Galvin University of New Hampshire University of Bern, MPE-Garching, et al.	One minute average solar wind proton density, bulk speed, thermal speed, and direction; alpha density; representative charge (or abundance) state distributions; suprathermal rates [1]
SECCHI (Sun-Earth Connection Coronal and Heliospheric Investigation) Principal Investigator: Dr. R. A. Howard	EUV imager, two coronagraphs with overlapping fields of view; two heliospheric imagers with overlapping fields of view
Naval Research Laboratory, Washington, D.C. Lockheed-Martin Solar and Astrophysics,, NASA-GSFC, University of Birmingham (U.K.), IAS, RAL, MPAe, U. Kiel, CSL, et al.	256x256 pixel highly compressed images from EUVI, COR1, COR2, HI1, HI2 [14]
S/WAVES (STEREO/WAVES)	Interplanetary radio bursts from 40 kHz to 16 MHz
Principal Investigator: Dr. JL. Bougeret CNRS, Observatoire de Paris, University of Minnesota, UC keley, NASA-GSFC	One minute average radio dynamic spectrum (Intensity, frequency, time) [1]

S/WAVES

STEREO IMPACT

System Requirements Review 2000-May-24,25

IMPACT / PLASTIC Energy Coverage

SECCHI Exploration of CMEs and the Heliosphere on STEREO

- · What Configurations of the Corona Lead to a CME?
- · What Invitates a CME?
- *What Accelerates CMEs?
- *How Does a CME Interact With the Helisophere?
- *How do CMEs Come Space Weather Disturbances?

- BETA but-bary Connection Independent for how of Children Schools Histories

 - Otserva Tigastry of Kert-Shaded ONEs
 Events Notice Title and Cast Official Services

- Billiopher the Magnetic Stopes of Stella. a Photography Shaping Motoria

 - Magnetic Flux Emergence
 Magnetic Flux Exercises and Security

- Accessing of Charged Particles + Interaction 1909, Chiar District.
- ### Sweetpen the Discoulant of CMSs Std. the Pelinghers

 CMS Physical Expressions of 1 kin. Introduce Std. Introduce Plants

 Commission of Shoots Shoots Shoots Confidence Regulated Regulations

 Commission of Shoots Sheet & Co-Robbing stoeraction frequency

- - in Contrast Cody, byte and Was Spiller.
 - A. S. Real, her framework (Strikerholm)

STEREO as ILWS Test-bed?

Display and Archive

Universal space network: access your world

11m X-band antenna \$575 per hour

20 hours per day X 2 spacecraft = \$8.4M/year

Potential Antenna Partners

- Rutherford Appleton Labs (U.K.) ACE antenna
 - Upgrade to X-band underway
- NOAA Space Environment Center
- U.C. Berkeley (STEREO PI team)
 - RHESSI antenna requires upgrade to X-band
- CRL (Japan)
 - Budget and technical feasibility studies are underway
- Germany (GSOC request through University of Kiel)
- Brazil (W. Gonzales)
- ESOC/ESA has a network of 15m X-band antennas with significant spare capacity (estimated ~200 hours per week)

What Do Antenna Partners Need?

- X-band dish and receiver
 - 7 meter dish covers 2-year nominal mission
 - 15 meter dish covers 5-year extended mission
- Low data rate Internet connection during telemetry reception periods
 - TCP/IP socket, email, ftp, etc.
- Beacon description reprints available
- ftp://stereo.gsfc.nasa.gov/pub/cstcyr/STEREO/

Antenna Contact Duration

(latitude versus time)

For a single mid-latitude location on Earth, the two STEREO spacecraft will be seasonally out-of-phase

Example using RAL, U.K. (lat. +51°)

	STEREO-A	STEREO-B
March 2006	6 hours/day	15 hours/day
Sept 2006	15 hours/day	6 hours/day
March 2007	6 hours/day	15 hours/day

